Potential Anti-purines. Part III.¹ Some 9-Dialkylamino-**62**. alkyl-purines and -8-azapurines.

By J. H. LISTER and G. M. TIMMIS.

The synthesis is described of purines and 8-azapurines substituted at the 9-position with ω -dialkylaminoalkyl groups. Some related ω -hydroxy- and ω amino-alkylpurines are included. Absorption spectra are recorded and discussed.

ANTIMALARIAL compounds of the mepacrine and chloroquine types, which are derivatives of acridine and quinoline respectively, have been shown² readily to penetrate the cell and to be localised on the nucleic acid. An essential feature of the structure of these antimalarials is a basic side chain, and since interference at some stage of the biosynthesis of nucleic acid may be an essential requisite in the chemotherapy of the malignant cell, we have prepared purines and 8-azapurines bearing such side chains in the hope that these derivatives would be readily assimilated into the cell. By analogy with the naturally occurring nucleosides we have also attached 2-hydroxyethyl and 3-hydroxypropyl groups at the 9-position of the purine.

Two series of purines were prepared, both having a two- or three-carbon chain at the 9-position terminating in a basic or a hydroxyl group.

In the first series, based upon 6-methylpyrimidine, the purines were usually liquids or low-melting solids and the intermediates were unstable. The other series, being derivatives of adenine, had higher melting points, and the intermediates were more stable: in this series the corresponding 8-azapurines were also prepared.

6-Methylpurines.—Condensing 2 equivalents of 3-diethylaminopropylamine with 2.4dichloro-6-methyl-5-nitropyrimidine in ether gave a solution containing 2-chloro-4-3'-diethylaminopropylamino-6-methyl-5-nitropyrimidine (I; X = Cl). This compound was not isolated but was caused to react at the 2-position with an excess of an amine, yielding

the nitropyrimidines (I; $X = NH \cdot [CH_2]_3 \cdot NEt_2$ and $X = NH_2$). On catalytic reduction over Raney nickel these gave gums: the 5-amino-2-diethylaminopropylaminopyrimidine was isolated as the tripicrate, and the 2,5-diamino-derivative was purified by distillation. Ring closure with formamide in the presence of hydrochloric acid gave the purines (II; $X = NH \cdot [CH_2]_3 \cdot NEt_2$ as a viscous oil and (II; $X = NH_2$) as a low-melting solid, both somewhat hydrated.

Adenine Derivatives.—These were prepared similarly, from 4-amino-6-chloro-5-nitropyrimidine in ethanol (see Table 1). In the case of compound (III; $n = 2, X = NH_2$) the addition procedure was reversed, the chloropyrimidine being added to an ethanolic solution of ethylenediamine. Reduction was smoothly accomplished in ethanol with hydrogen and Raney nickel to the 4,5,6-triaminopyrimidines (Table 2), which were light-sensitive and unstable. These gave the corresponding purines (IV) (Table 3) on treatment with formamide and hydrochloric acid.

A few derivatives of 6-dimethylaminopurine were also made, these being analogues of the base of Puromycin. By starting with 4-chloro-6-dimethylamino-5-nitropyrimidine³ and using the above conditions 9-diethylaminopropyl-6-dimethylaminopurine

- Part II, Leese and Timmis, J., 1958, 4107.
 Parker and Irvin, J. Biol. Chem., 1952, 199, 897.
 Rose, J., 1954, 4116.

Lister and Timmis:

(V; n = 3, $X = \text{NEt}_2$) was obtained as a distillable oil. The hydroxyethylpurine (V; n = 2, X = OH) was formed as its acetate after ring closure with an ethyl orthoformateacetic anhydride mixture and recovered therefrom by treatment with aqueous alkali. Attempts to prepare the aminoethylpurine (V; n = 2, $X = \text{NH}_2$) were not successful as the initial condensation of ethylenediamine with the nitropyrimidine gave only the ethylenediamine derivative (VII). The alkali-treatment used during the isolation of the majority of the purines removed the risk of contamination by the isomeric 6-(substituted amino)purines (VI) which could have been formed by the alternative ring closure across the two primary amino-groups.

The action of thionyl chloride on the hydroxyethyl- and hydroxpropyl-purine (IV; n = 2 and 3 respectively, X = OH) gave the chloroalkyl derivatives (IV; n = 2 and 3, X = Cl) which were of interest as possible cytotoxic agents in view of their relation to the "nitrogen mustards."

From the above 4,5-diaminopyrimidine intermediates 8-azapurines (Table 4) were obtained by the action of cold nitrous acid, namely, (VIII; n = 3, $X = NMe_2$ and NEt_2 ; n = 2 and 3, X = OH) and (IX; n = 3, $X = NEt_2$; n = 2, X = OH).

The ultraviolet absorption spectra of aqueous solutions confirmed the structures of the above adenine derivatives. There was no change in the curves between pH 7 and 12, a single peak in the region 260—261 m μ being exhibited, but at lower pH a slight shift to shorter wavelengths was observed. This indication of the lack of an anionic centre is reminiscent of the behaviour of 9-methyladenine⁴ under the same conditions. On the other hand, the isomeric 6-dialkylaminoalkylaminopurines have been reported ⁵ and show similar spectra to those of 6-methylaminopurine ⁶ which absorbs at higher wavelengths than the 9-substituted isomers. The anionic centre is apparent in the similar spectra at pH 2 and 7 and in the shift to longer wavelengths in alkaline solution.

The spectra of the 8-aza-adenines are likewise unaltered curves between pH 7 and pH 12, but the maxima are at much longer wavelengths (278 m μ) than those of the corresponding adenines. At lower pH the region of maximum absorption is at shorter wavelengths (262—263 m μ) and is close to that of the above adenines.

For both the purines and the azapurines replacement of the 6-amino- by a dimethylamino-group generally moves the peaks to longer wavelengths.

EXPERIMENTAL

Analyses are by Mr. P. R. W. Baker, Beckenham.

2,4-Bis-3'-diethylaminopropylamino-6-methyl-5-nitropyrimidine (I; $X = NH\cdot[CH_2]_3\cdot NEt_2$). —To a solution of 2,4-dichloro-6-methyl-5-nitropyrimidine (10 g.) in ether (150 ml.) was added

- ⁵ Skinner, Shive, Ham, Fitzgerald, and Eakin, *ibid.*, 1956, 78, 5097.
- ⁶ Mason, J., 1954, 2071.

⁴ Robins and Lin, J. Amer. Chem. Soc., 1957, 79, 490.

Γ		1 000000000		020
	Yield (%) 88 2 98 2 98 92 88 88 97		Yield (%) $\frac{1}{97}$ $\frac{1}{76}$ $\frac{1}{98}$ $\frac{1}{98}$ $\frac{1}{98}$ $\frac{1}{98}$ $\frac{1}{98}$ $\frac{1}{98}$ $\frac{1}{57}$ $\frac{1}{53}$ $\frac{1}{53}$ $\frac{1}{54}$ $\frac{1}{54}$ $\frac{1}{54}$	<u> </u>
Required (%)	85:0 35:0 31:2 35:2 32:9 32:9 32:9	R NH2 NH(CH2), X	N 34.9 34.6 334.6 334.6 335.5 1, 335.5 339.1 349.1 349	4.1 35.5 5.3 30.5 <i>Dipicrate</i> , m. p. 157° Found 17.3, required
	H 70.07 70.4 70.7 H 70.07 70.4 70.7 1.1.7 4.6 70.4 70.7	NH2 NH1	H 5.8 8.6 9.3 9.9 9.9 9.9 9.9 9.9 9.9 7.7 7.7 7.7 7.2 7.6 H H 7.6 7.6 8.7 7.7 5.1 6.3 8.7 5.1 5.7 7.5 5.7 7.5 8.7 5.7 7.5 7.5 7.5 7.5 8.7 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	4.1 5.3 <i>ipicrate</i> , ound 17
·	36444 36:24 30:24 30:24 30:44 30:4 30:4 30:4 30:4 30:4 30:4 30		C C 51.4 56.4 56.4 56.4 56.4 56.4 56.4 57.2 C C C C C C C C C C C C C C C C C C C	
L ₂ varied.	Formula C ₉ H ₁₀ O ₂ N ₆ C ₉ H ₁₉ O ₂ N ₆ C ₁₁ H ₂₉ O ₂ N ₆ C ₁₄ H ₂₄ O ₂ N ₆ C ₆ H ₉ O ₂ N ₅ C ₆ H ₁₉ O ₃ N ₅ C ₆ H ₁₀ O ₃ N ₅	ines of Table 1.	N Formula 34.8 $C_{6}H_{12}N_{6}, 2HCl = 2$ 40.1 $C_{9}H_{18}N_{6}, 2HCl = 2$ 40.1 $C_{9}H_{18}N_{6}, 3H_{10}$ $E_{11}H_{10}N_{5}$ 30.4 $C_{6}H_{10}N_{5}$ 30.4 $C_{6}H_{10}N_{5}$ 37.8 $C_{7}H_{10}N_{5}$ 7.13 N_{5} $C_{7}H_{10}N_{5}$ 10.10 $H_{2}O$ E_{12} 10.10 $H_{2}O$ $H_{2}O$ $H_{2}O$ 33.9 $C_{12}H_{20}N_{6}$ 33.9 $C_{12}H_{20}N_{6}$ 33.9 $C_{11}H_{10}N_{6}$ 33.9 $C_{11}H_{10}N_{6}$ 33.9 $C_{11}H_{10}N_{6}$ 33.0 $C_{11}H_{10}N_{6}$ 33.0 $C_{11}H_{10}ON_{6}$ 33.0 $C_{11}H_{10}ON_{6}$ 33.0 $C_{11}H_{10}ON_{6}$ 33.0 $C_{11}H_{10}ON_{6}$ 33.0 $C_{11}H_{10}ON_{6}$ 33.0 $C_{10}H_{10}ON_{6}$ 33.0 $C_{10}ON_{6}$ 33.0 $C_{10}H_{10}ON_{6}$ 33.0 $C_{10}H_{10}ON_{6}$	H ₂ O ¢ N, 23.8° amide.
with N	$^{\rm N}_{\rm N}$ N $^{\rm 42.0}_{\rm 35.0}$ $^{\rm 31.2}_{\rm N}$ $^{\rm 31.2}_{\rm N}$ $^{\rm 31.2}_{\rm N}$ $^{\rm 32.6}_{\rm N}$	byrimid	N 34:8 34:6 34:40-1 35:4 35:4 35:4 1 35:1 35:1 35:1 35:1 35:1 35:1 35:1 35	35.6 30.3 30.3 irres C, 4 6). ° D
(III) but Found (%)	H 70.05 4.7.04.7.0 5.06.7.10 5.06.7.10 5.06.7.10 5.06.7.10 5.06.7.10 5.06.7.10 5.06.7.10 5.06.7.10 5.06.7.10 5.07.100 5.07.100 5.07.10000000000000000000000000000000000	p in the p	$ \begin{array}{ccccccc} C & H & N \\ 29.9 & 5.7 & 34.8 \\ 51.5 & 8.5 & 40.1 \\ 56.7 & 9.7 & 34.4 \\ 56.7 & 9.7 & 30.4 \\ 42.3 & 6.9 & 40.6 \\ 48.8 & 7.6 & 35.4 \\ 40.6 & 7.1 & 37.8 \\ 40.6 & 7.1 & 37.8 \\ 10. & P. & 0000 \\ 10. & P. & 0000 \\ 10. & P. & 1000 \\ 10. & 10000 \\ $	3.9 35.6 4.9 30.3 20,Ns requires C, N, 22.9%). ° 1 ed 15.4%.
TABLE 1. Pyrimidines, as (III) but with NH ₂ varied. Found (%)	C C 45.0 39.5 39.5 39.5	itro-grou		42.5 42.4 42.4 10, 2C ₆ H ₃ H, 4.1; 5.4, require
	Solvent H ₂ O H ₂ O EtOH Aq. EtOH H ₂ O EtOH H ₂ O	iction of the 5-m	Solvent Aq. PrOH EtAc CI4 Pret b Dioxan $C_{6}H_{6}$ Dioxan $C_{6}H_{6}$ Solvent Dioxan $C_{6}H_{6}$ EtOAc $C_{6}H_{12}$	EfOH MeOH , $23.3.$ $C_{12}H_4$ nires C, 42.5 ; Cl: Found IE
	M. P. $195-197^{\circ}$ 156-157 156-157 127-128 174-176 (picrate) 212-213 127 175-176	Triamines formed by reduction of the 5-nitro-group in the pyrimidines of Table 1	M. P. 270° 270° 270° 283–3125 823–3125 823–3137 136–137 136–137 136–137 136–120 136–120 136–120 136–120 136–210° 135–136 135–136 135–136 135–136	203-205 187-189 C, 40-9; H, 3-6; ₂₄ N ₆ , 2C ₆ H ₃ O ₇ N ₃ re required 17-9%.
	% N M M M M M M M		ັນ ເຊິ່ງ ການຄາວສະສຸມ Hits Hits Hits Hits Hits Hits Hits Hits	2 3 P. 225° (Found: N, 23.0. C ₁₄ H Cl: Found 17.6,
	\mathbf{X} \mathbf{NH}_{2} \mathbf{NMe}_{2} \mathbf{NEt}_{2} \mathbf{OH} \mathbf{OH} \mathbf{OH} \mathbf{OH}	TABLE 2.	4-Subst. X * * * * * * * * * * * * * * * * * *	ر ښ ا
	4-Subst. NH2 NH2 NH2 NM62 NM62 NM62 NH3		4-Subst. NH2 NH2 NH4 NH6 NH6 NH6 C, H10N5 C, H110N5 C, H110N5 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2	NH ² CI NH ² CI * Dipicrate, n C, 43·1; H, 4·3 * Cyclohexane.

Potential Anti-purines. Part III.

[1960]

329

3-diethylaminopropylamine (30 g.) with stirring. Next morning the ether layer was shaken with water and dried (Na₂SO₄). Removal of the ether left a mobile orange oil which crystallised (18 g.). It was dissolved in ether, filtered through charcoal and Filtercel, and recovered, affording the *product* as pale yellow prisms, m. p. 37-39° (Found: C, 57.4; H, 9.3; N, 25.0. $C_{10}H_{32}O_2N_7$ requires C, 57.7; H, 9.4; N, 24.8%).

5-Amino-2,4-bis-3'-diethylaminopropylamino-6-methylpyrimidine.—The above product (18 g.) in ethanol was hydrogenated over Raney nickel until the uptake was completed. Removal of the catalyst and solvent left a low-melting wax (14.5 g.). It did not crystallise but with saturated ethanolic picric acid gave the *tripicrate*, m. p. 142° (from ethanol) (Found: C, 42.75; H, 4.9; N, 20.7. $C_{18}H_{38}N_7.3C_{6}H_3O_7N_3$ requires C, 42.2; H, 4.6; N, 21.3%).

9-3' - Diethylaminopropyl - 2 - 3' - diethylaminopropylamino - 6 - methylpurine (II; X = NH·[CH₂]₃·NEt₂).—The preceding pyrimidine (14 g.) was heated in formamide (20 ml.) and hydrochloric acid (d 1·16; 5 ml.) at 175—180° for 30 min. After cooling, the solution was treated with 10n-sodium hydroxide and ether extracted, the extracts, after drying (MgSO₄), were evaporated, and the residual dark oil was distilled at reduced pressure. Redistillation gave the *purine* (5 g.), b. p. 216—218°/0·5 mm. (Found: C, 62·6; H, 9·7; N, 26·1. C₂₀H₃₇N₇, $\frac{1}{2}$ H₂O requires C, 62·5; H, 10·0; N, 25·5%).

Analogous compounds were similarly prepared. The *purines* (IV; n = 3, $X = NMe_2$ and NEt₂) were recovered by adding concentrated sodium hydroxide solution to the reaction

TABLE 4.A	1 <i>zapurine</i> s	(VIII)	and	(IX).
-----------	---------------------	--------	-----	-------

					Fo	und (%)		Req	uired	(%)	Yield
6-Subst.	\mathbf{X}	n	М. р.	Solvent	С	Н	Ν	Formula	С	н	Ν	(%)
н	NMe ₂	3	172—173°	COMe ₂	48.6	$6 \cdot 9$	44.3	$C_{9}H_{15}N_{7}$	48.8	6.8	44.3	67
H	NEt ₂	3	161 - 162	COMe ₂	$53 \cdot 3$	$7 \cdot 4$	39.7	$C_{11}H_{19}N_7$	$53 \cdot 0$	7.7	39.3	99
Me	NEt ₂	3	(167—168°/	*	$55 \cdot 3$	8.0	$34 \cdot 4$	$C_{13}H_{23}N_{7}, \frac{1}{4}H_{2}O$	$55 \cdot 4$	8.4	34.8	65
			0·1 mm.)									
\mathbf{H}	OH	2	253 - 254	$H_{2}O$	40.0	$4 \cdot 5$	$46 \cdot 2$	$C_6H_8ON_6$	40.0	4.5	46.6	74
Me	OH	2	139 - 140	C_6H_6	46.2	$5 \cdot 8$	40.0	$C_8H_{12}ON_6$	46.2	$5 \cdot 8$	40.4	54
Н	OH	3	214 - 215	H_2O	43.5	$5 \cdot 1$	$42 \cdot 9$	$C_7H_{10}ON_6$	$43 \cdot 3$	$5 \cdot 2$	43 ·4	69

TABLE 5. pH and absorption maximum (mu).

£ 11.	0.00	P •					
Substance	$_{\rm pH}$	$\lambda_{max.}$	10 - ³ε	Substance	pН	λ_{\max}	10 -3 ε
Adenine derivatives				Purine derivatives			
9-Methyl ⁴	1	261	14.6	9-3'-Diethylaminopropyl-6-	2	268	16.4
-	11	262	11.9	dimethylamino	7 - 12	277	16.1
9-3'-Dimethylaminopropyl	2	259	13.7	9-2'-Hydroxyethyl-6-di-	2	268	14.2
	7 - 12	261	13.8	methylamino	7 - 12	277	14.7
9-3'-Diethylaminopropyl	2	258	14.5	6-Methylamino ⁶	2-7	266	~ 16.0
	7 - 12	261	14.4			267	
9-2'-Aminoethyl	2	257	$12 \cdot 1$		12	273	~ 16.0
-	7 - 12	261	12.6				
9-3'-Hydroxypropyl	2	259	14.6	8-Aza-adenine derivatives			
5 51 15	7 - 12	261	14.6	9-3'-Dimethylaminopropyl	2	263	14.7
9-2'-Hydroxyethyl	2	258	12.8	<i>y</i> 1 1 <i>y</i>	7 - 12	278	11.3
5 5 5	7 - 12	260	12.9	9-3'-Diethylaminopropyl	2	263	10.2
9-3'-Chloropropyl	2	259	13.9		7 - 12	278	9.8
1 19	7 - 12	261	14.3	9-3′-Hydroxypropyl	2	263	12.2
9-2'-Chloroethyl	2	258	14.1		7 - 12	278	11.6
2	7 - 12	261	14.1	9-2'-Hydroxyethyl	2	262	12.0
				5 5 5	7 - 12	278	11.0
				8-Azapurine derivatives			
				9-3'-Diethylaminopropyl-6-	2	274	17.0
				dimethylamino	7 - 12	297	23.7
				9-2'-Hydroxyethyl-6-di-	. 12	273	14.0
				methylamino	7 - 12	295	14.0
				5			

mixture; and (IV; n = 2, $X = NH_2$) by similar addition after evaporation and treatment with a little water; but (IV; n = 2 and 3, X = OH) crystallised from the reaction mixture. These products are in Table 3.

2,5-Diamino-4-3'-diethylaminopropylamino-6-methylpyrimidine.—To a cooled, stirred solution

of 2,4-dichloro-6-methyl-5-nitropyrimidine (9.6 g.) in ether was added dropwise 3-diethylaminopropylamine (12 g.). After 1 hr. the solution was evaporated to small bulk and an excess of ethanol saturated with ammonia added, after which the solution was heated under reflux for 1 hr. Removal of the ethanol left a red oil which was hydrogenated in ethanol to completion over Raney nickel. After removal of the solvent the residual oil was distilled under reduced pressure (b. p. 214—220°/2.5 mm.); recrystallisation of the distillate (1.2 g.) from ether gave the *triaminopyrimidine* as needles, m. p. 123—125° (Found: C, 56.9; H, 9.8; N, 33.8. C₁₂H₂₄N₆ requires C, 57.1; H, 9.6; N, 33.3%).

2-Amino-9-3'-diethylaminopropyl-6-methylpurine (II; $X = NH_2$).—The triaminopyrimidine (1 g.) was heated in formamide (5 ml.) with hydrochloric acid (d 1.16; 0.5 ml.) at 175° for 30 min., then cooled. An excess of saturated ethanolic picric acid was added, giving the dipicrate (2.15 g.), m. p. 208—210° (from water) (Found: C, 41.5; H, 3.8; N, 23.2. $C_{13}H_{22}N_6, 2C_6H_3O_7N_3$ requires C, 41.7; H, 3.9; N, 23.2%).

The free *base* was obtained by treating the picrate with cold, concentrated sodium hydroxide solution and extracting the whole with ether. It had m. p. $53-54^{\circ}$ (Found, on material dried at 40°: C, 58.6; H, 8.7; N, 32.1. C₁₃H₂₂N₆, $\frac{1}{4}$ H₂O requires C, 58.5; H, 8.5; N, 31.5%).

6-Dimethylamino-9-2'-hydroxyethylpurine (V; n = 2, X = OH) (see Table 3).—The appropriate triamine (1 g.) in ethyl orthoformate (14 g.) and acetic anhydride (10 g.) was heated under reflux for 1 hr. After evaporation, the residue was dissolved in hot benzene and reprecipitated with light petroleum (b. p. 40—60°), then recrystallised from cyclohexane, giving 9-2'-acetoxyethyl-6-dimethylaminopurine (0.73 g., 85%) as needles, m. p. 93—94°.

This derivative (0.25 g.) was heated in ethanol (4 ml.) and 2N-sodium hydroxide (5 ml.) at 40° for 25 min. and the whole was evaporated. The residue was extracted with hot ethyl acetate, the combined extracts were evaporated, and the residual oil was rubbed with ether, giving an off-white solid. Crystallisation from ethanol-ether gave 6-dimethylamino-9-2'-hydroxyethylpurine as prisms, m. p. 135—136°.

9-2'-Chloroethyladenine (IV; n = 2, X = Cl) (see Table 3).—9-2'-Hydroxyethyladenine (0.85 g.) and thionyl chloride (10 ml.) were heated on a water-bath for 30 min. Removal of the thionyl chloride and crystallisation of the residue from the minimum of ethanol gave 9-2'-chloro-ethyladenine hydrochloride as yellow laths (0.85 g., 77%), m. p. 221—223° (Found: C, 35.6; H, 4.1; N, 29.9. C₇H₈N₅Cl,HCl requires C, 35.9; H, 3.9; N, 29.9%).

The base was obtained as a crystalline precipitate on treatment of an aqueous solution of the hydrochloride with sodium carbonate solution. Recrystallisation from ethanol gave colourless prisms of 9-2'-chloroethyladenine, m. p. $203-205^{\circ}$.

8-Azapurines (see Table 4).—The preparation of 9-3'-dimethylaminopropyl-8-aza-adenine (VIII; n = 3, $X = NMe_2$) is given as an example of the general method.

Sodium nitrite (2.6 g.) in water (15 ml.) was added dropwise to a stirred solution of 4,5-diamino-6-3'-dimethylaminopropylaminopyrimidine (5.5 g.) in acetic acid (50 ml.). The solution was then brought to pH 7 by means of ammonia solution, and the precipitate was filtered off and dried. Crystallisation from acetone gave 9-3'-dimethylaminopropyl-8-aza-adenine (3.9 g., 67%)m. p. 172—173°

We are indebted to Dr. E. M. F. Roe for light-absorption data and to Mr. J. M. Johnson for technical assistance. This work was supported by grants to this Institute from the British Empire Cancer Campaign, the Jane Coffin Childs Memorial Fund for Medical Research, the Anna Fuller Fund, and the National Cancer Institute of the National Institutes of Health, U.S. Public Health Service.

CHESTER BEATTY RESEARCH INSTITUTE, INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL, FULHAM ROAD, LONDON, S.W.3. [Received, June 24th, 1959.]